A Simulator for Hedonic Games

Luke Harold Miles University of Kentucky, Lexington, United States

What's a hedonic game?

A set of players and, for each player, a ranking of possible groups to join

Example of a Hedonic Game Favorite group Loathed group $AG \ge_A A >_A$ AGC Austin: AC $>_A$ Possible partitions: $AG >_G G >_G AGC$ GC Dr {AGC} Goldsmith: $>_{G}$ $\{AG, C\}$ $\{A, GC\}$ $\{AC, G\}$ $AKC >_C KC >_C AC >_C C$ Cory: $\{A, G, C\}$

Basic Notation

$$G = (N, \{\geq_i : i \in N\}) \text{ is a hedonic game.}$$

N is the (finite) set of players.
Each \geq_i is a ranking of the coalitions containing *i*.

A <u>class</u> of hedonic games is any (finite or infinite) set of hedonic games.

 π is a <u>partition</u> of *N*. $\pi(i)$ is the <u>coalition</u> in π containing *i*. $N = \{\text{Austin, Dr G, Cory}\}$ $\pi = \{\{\text{Austin, Dr G}\}, \{\text{Cory}\}\}$

Core stability

A (nonempty) coalition C <u>blocks</u> a partition π iff every player *i* in C would be happier in C than in $\pi(i)$.

i.e., C blocks π iff $\forall i \in C: C >_i \pi(i)$.

 π is <u>core stable</u> iff no possible coalition $C \subseteq N$ blocks π .

Core Stab	<u>ility wi</u>	th Aus	tin, D	Dr G, a	<u>nd (</u>	Cory	
					Favor	rite group	
Le Contraction of the second s	Austin:	$AG >_A$	A> _A	$AGC >_A$	AC -	Loat	hed group
I	Dr Goldsmith:	AG > _G	G> _G	AGC > _G	GC	Possible partitions: {AGC} {AG, C} {A, GC}	Core stable? No. AG blocks Yes! No. G blocks
	Cory:	AKC > _C	KC > _C	$AC >_C$	C	${AC, G} {AC, G} {A, G, C}$	No. A blocks No. AG blocks

Core Stability with Austin, Dr G, and Cory (version 2)

1 dv					1 4 1 0	nie group	
	Austin:	$AG >_A$	AC > _A	A> _A	AGC <	Loat	hed group
ing the second sec						Possible	Core stable?
	Dr Goldsmith:	$GC >_G$	AG > _G	G> _G	AGC	<pre>partitions: {AGC} {AGC, C} {A GC}</pre>	No. AG blocks No. GC blocks
	Cory:	$AC >_C$	GC > _C	C> _C	AGC	$\{AC, G\}\$ $\{A, G, C\}$	No. AG blocks No. AG blocks

Favorite group

Two frequently-asked questions

Given a class of hedonic games...

- 1. Is there always a core-stable partition?
- 2. If not, how hard is it to decide?

Friend-Oriented Hedonic Games

Each player labels every other player as either a friend or an enemy.

Ranking:

More friends is a lot better; fewer enemies is a little better.

1. Is there always a core-stable partition? Yes

(Dimitrov, Borm, Hendrickx, Sung. 2006.)

Enemy-Oriented Hedonic Games

Each player labels every other player as either a friend or an enemy.

Ranking:

Fewer enemies is a lot better; more friends is a little better.

1. Is there always a core-stable partition? Yes

(Dimitrov, Borm, Hendrickx, Sung. 2006.)

Fractional Hedonic Games

Each player scores every other player. (e.g. Cory ranks Austin 3.46)

Ranking:

Higher average score is better.

- 1. Is there always a core-stable partition? No
- 2. How hard is it to decide? Σ_2^{p} -complete!

(Aziz, Brandl, Brandt, Harrenstein, Olsen, Peters. 2017.)

Altruistic Hedonic Games

Each player labels every other player as either a friend or an enemy.

Ranking: "I'll pick the coalition in which my friends and I are both happy."

- 1. Is there always a core-stable partition? No
- 2. How hard is it to decide? Varies

(Nguyen, Rey, Rey, Rothe, Schend. 2016.)

The Simulator

<u>Screenshot</u>

Hedonic Game Simulator

Welcome to the hedonic game simulator! I will be presenting this at the 2017 Algorithmic Decision Theory Doctoral Consortium. I uploaded my extended abstract to <u>arXiv</u>.

This software doesn't work at all on smartphones. Desktop with recent chrome or firefox recommended. You can click and drag the nodes in the box.

Enter adjacency list below. Symmetric edges are automatically added.

ocorge: macyoe, monaci	
Lindsay: Tobias, Maeybe	
SteveHolt: Maeybe	
Lucille: Lindsay, George	Draw

· Enter partition:

Make adjacency list

Make partition

Choose Class of Hedonic Games

Choose Stability Notion

		$score_i^{FR}(A$	individually rational Nash-stable	
	Introduced in [A]	BH2014].	individually stable contractually individually stable popular strictly popular	
•	Stability check:	Is this partition.	✓ core-stable	
	Check this partition	Check existence	strictly core-stable perfect	

No. Counterexample: coalition {George, Michael}

Compute Scores

Below you can compute every player's score of every other coalition in the partition. (A player *i*'s score of a coalition C is actually *i*'s score of C ∪ {*i*}.) Compute [-]

	{SteveHolt,Maeybe,George}	{Lindsay,Tobias,Lucille}	{Michael}	{}
George	0.33	0.25	0.50	0
Lindsay	0.25	0.67	0	0
Lucille	0.25	0.33	0	0
Maeybe	0.67	0.25	0	0
Michael	0.25	0	0	0
SteveHolt	0.33	0	0	0
Tobias	0	0.33	0	0